Learning Mixtures of Linear Regressions in Subexponential Time via Fourier Moments

12/16/2019
by   Sitan Chen, et al.
0

We consider the problem of learning a mixture of linear regressions (MLRs). An MLR is specified by k nonnegative mixing weights p_1, ..., p_k summing to 1, and k unknown regressors w_1,...,w_k∈R^d. A sample from the MLR is drawn by sampling i with probability p_i, then outputting (x, y) where y = 〈 x, w_i 〉 + η, where η∼N(0,ς^2) for noise rate ς. Mixtures of linear regressions are a popular generative model and have been studied extensively in machine learning and theoretical computer science. However, all previous algorithms for learning the parameters of an MLR require running time and sample complexity scaling exponentially with k. In this paper, we give the first algorithm for learning an MLR that runs in time which is sub-exponential in k. Specifically, we give an algorithm which runs in time O(d)·(O(√(k))) and outputs the parameters of the MLR to high accuracy, even in the presence of nontrivial regression noise. We demonstrate a new method that we call "Fourier moment descent" which uses univariate density estimation and low-degree moments of the Fourier transform of suitable univariate projections of the MLR to iteratively refine our estimate of the parameters. To the best of our knowledge, these techniques have never been used in the context of high dimensional distribution learning, and may be of independent interest. We also show that our techniques can be used to give a sub-exponential time algorithm for learning mixtures of hyperplanes, a natural hard instance of the subspace clustering problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset