Learning Failure-Inducing Models for Testing Software-Defined Networks

10/27/2022
by   Raphaël Ollando, et al.
0

Software-defined networks (SDN) enable flexible and effective communication systems, e.g., data centers, that are managed by centralized software controllers. However, such a controller can undermine the underlying communication network of an SDN-based system and thus must be carefully tested. When an SDN-based system fails, in order to address such a failure, engineers need to precisely understand the conditions under which it occurs. In this paper, we introduce a machine learning-guided fuzzing method, named FuzzSDN, aiming at both (1) generating effective test data leading to failures in SDN-based systems and (2) learning accurate failure-inducing models that characterize conditions under which such system fails. This is done in a synergistic manner where models guide test generation and the latter also aims at improving the models. To our knowledge, FuzzSDN is the first attempt to simultaneously address these two objectives for SDNs. We evaluate FuzzSDN by applying it to systems controlled by two open-source SDN controllers. Further, we compare FuzzSDN with two state-of-the-art methods for fuzzing SDNs and two baselines (i.e., simple extensions of these two existing methods) for learning failure-inducing models. Our results show that (1) compared to the state-of-the-art methods, FuzzSDN generates at least 12 times more failures, within the same time budget, with a controller that is fairly robust to fuzzing and (2) our failure-inducing models have, on average, a precision of 98 recall of 86

READ FULL TEXT
research
11/03/2017

Trailing the Snail: SDN Controller Security Evolution

The first OpenFlow Software-Defined Network (SDN) Controller, NOX, was d...
research
05/10/2019

RetroFlow: Maintaining Control Resiliency and Flow Programmability for Software-Defined WANs

Providing resilient network control is a critical concern for deploying ...
research
04/29/2018

Umbrella: A Unified Software Defined Development Framework

The Northbound (NB) APIs that SDN controllers provide differ in terms of...
research
04/24/2020

Providing a way to create balance between reliability and delays in SDN networks by using the appropriate placement of controllers

Computer networks covered the entire world and a serious and new develop...
research
02/07/2019

MORPH: An Adaptive Framework for Efficient and Byzantine Fault-Tolerant SDN Control Plane

Current approaches to tackle the single point of failure in SDN entail a...
research
08/20/2021

Controller Placement in SDN-enabled 5G Satellite-Terrestrial Networks

SDN-enabled Integrated satellite-terrestrial networks (ISTNs), can provi...
research
09/08/2022

SPIDER: A Practical Fuzzing Framework to Uncover Stateful Performance Issues in SDN Controllers

Performance issues in software-defined network (SDN) controllers can hav...

Please sign up or login with your details

Forgot password? Click here to reset