Learning Depth Vision-Based Personalized Robot Navigation From Dynamic Demonstrations in Virtual Reality

10/04/2022
by   Jorge de Heuvel, et al.
0

For the best human-robot interaction experience, the robot's navigation policy should take into account personal preferences of the user. In this paper, we present a learning framework complemented by a perception pipeline to train a depth vision-based, personalized navigation controller from user demonstrations. Our refined virtual reality interface enables the demonstration of robot navigation trajectories under motion of the user for dynamic interaction scenarios. In a detailed analysis, we evaluate different configurations of the perception pipeline. As the experiments demonstrate, our new pipeline compresses the perceived depth images to a latent state representation and, thus, enables efficient reasoning about the robot's dynamic environment to the learning. We discuss the robot's navigation performance in various virtual scenes by enrolling a variational autoencoder in combination with a motion predictor and demonstrate the first personalized robot navigation controller that solely relies on depth images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset