Knock-Knock: Acoustic Object Recognition by using Stacked Denoising Autoencoders

08/15/2017
by   Shan Luo, et al.
0

This paper presents a successful application of deep learning for object recognition based on acoustic data. The shortcomings of previously employed approaches where handcrafted features describing the acoustic data are being used, include limiting the capability of the found representation to be widely applicable and facing the risk of capturing only insignificant characteristics for a task. In contrast, there is no need to define the feature representation format when using multilayer/deep learning architecture methods: features can be learned from raw sensor data without defining discriminative characteristics a-priori. In this paper, stacked denoising autoencoders are applied to train a deep learning model. Knocking each object in our test set 120 times with a marker pen to obtain the auditory data, thirty different objects were successfully classified in our experiment and each object was knocked 120 times by a marker pen to obtain the auditory data. By employing the proposed deep learning framework, a high accuracy of 91.50 method using handcrafted features with a shallow classifier was taken as a benchmark and the attained recognition rate was only 58.22 recognition rate of 82.00 raw acoustic data as input. In addition, we could show that the time taken to classify one object using deep learning was far less (by a factor of more than 6) than utilizing the traditional method. It was also explored how different model parameters in our deep architecture affect the recognition performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset