KNN Ensembles for Tweedie Regression: The Power of Multiscale Neighborhoods
Very few K-nearest-neighbor (KNN) ensembles exist, despite the efficacy of this approach in regression, classification, and outlier detection. Those that do exist focus on bagging features, rather than varying k or bagging observations; it is unknown whether varying k or bagging observations can improve prediction. Given recent studies from topological data analysis, varying k may function like multiscale topological methods, providing stability and better prediction, as well as increased ensemble diversity. This paper explores 7 KNN ensemble algorithms combining bagged features, bagged observations, and varied k to understand how each of these contribute to model fit. Specifically, these algorithms are tested on Tweedie regression problems through simulations and 6 real datasets; results are compared to state-of-the-art machine learning models including extreme learning machines, random forest, boosted regression, and Morse-Smale regression. Results on simulations suggest gains from varying k above and beyond bagging features or samples, as well as the robustness of KNN ensembles to the curse of dimensionality. KNN regression ensembles perform favorably against state-of-the-art algorithms and dramatically improve performance over KNN regression. Further, real dataset results suggest varying k is a good strategy in general (particularly for difficult Tweedie regression problems) and that KNN regression ensembles often outperform state-of-the-art methods. These results for k-varying ensembles echo recent theoretical results in topological data analysis, where multidimensional filter functions and multiscale coverings provide stability and performance gains over single-dimensional filters and single-scale covering. This opens up the possibility of leveraging multiscale neighborhoods and multiple measures of local geometry in ensemble methods.
READ FULL TEXT