KDFNet: Learning Keypoint Distance Field for 6D Object Pose Estimation
We present KDFNet, a novel method for 6D object pose estimation from RGB images. To handle occlusion, many recent works have proposed to localize 2D keypoints through pixel-wise voting and solve a Perspective-n-Point (PnP) problem for pose estimation, which achieves leading performance. However, such voting process is direction-based and cannot handle long and thin objects where the direction intersections cannot be robustly found. To address this problem, we propose a novel continuous representation called Keypoint Distance Field (KDF) for projected 2D keypoint locations. Formulated as a 2D array, each element of the KDF stores the 2D Euclidean distance between the corresponding image pixel and a specified projected 2D keypoint. We use a fully convolutional neural network to regress the KDF for each keypoint. Using this KDF encoding of projected object keypoint locations, we propose to use a distance-based voting scheme to localize the keypoints by calculating circle intersections in a RANSAC fashion. We validate the design choices of our framework by extensive ablation experiments. Our proposed method achieves state-of-the-art performance on Occlusion LINEMOD dataset with an average ADD(-S) accuracy of 50.3 dataset mug subset with an average ADD accuracy of 75.72 experiments and visualizations demonstrate that the proposed method is able to robustly estimate the 6D pose in challenging scenarios including occlusion.
READ FULL TEXT