Joint Downlink-Uplink Beamforming for Wireless Multi-Antenna Federated Learning
We study joint downlink-uplink beamforming design for wireless federated learning (FL) with a multi-antenna base station. Considering analog transmission over noisy channels and uplink over-the-air aggregation, we derive the global model update expression over communication rounds. We then obtain an upper bound on the expected global loss function, capturing the downlink and uplink beamforming and receiver noise effect. We propose a low-complexity joint beamforming algorithm to minimize this upper bound, which employs alternating optimization to breakdown the problem into three subproblems, each solved via closed-form gradient updates. Simulation under practical wireless system setup shows that our proposed joint beamforming design solution substantially outperforms the conventional separate-link design approach and nearly attains the performance of ideal FL with error-free communication links.
READ FULL TEXT