Iterative Refinement for Real-Time Multi-Robot Path Planning

by   Keisuke Okumura, et al.

We study the iterative refinement of path planning for multiple robots, known as multi-agent pathfinding (MAPF). Given a graph, agents, their initial locations, and destinations, a solution of MAPF is a set of paths without collisions. Iterative refinement for MAPF is desirable for three reasons: 1) optimization is intractable, 2) sub-optimal solutions can be obtained instantly, and 3) it is anytime planning, desired in online scenarios where time for deliberation is limited. Despite the high demand, this is under-explored in MAPF because finding good neighborhoods has been unclear so far. Our proposal uses a sub-optimal MAPF solver to obtain an initial solution quickly, then iterates the two procedures: 1) select a subset of agents, 2) use an optimal MAPF solver to refine paths of selected agents while keeping other paths unchanged. Since the optimal solvers are used on small instances of the problem, this scheme yields efficient-enough solutions rapidly while providing high scalability. We also present reasonable candidates on how to select a subset of agents. Evaluations in various scenarios show that the proposal is promising; the convergence is fast, scalable, with reasonable quality, and practical because it can be interrupted whenever the solution is needed.


page 1

page 2

page 3

page 4


Fault-Tolerant Offline Multi-Agent Path Planning

We study a novel graph path planning problem for multiple agents that ma...

Solving Simultaneous Target Assignment and Path Planning Efficiently with Time-Independent Execution

Real-time planning for a combined problem of target assignment and path ...

LaCAM: Search-Based Algorithm for Quick Multi-Agent Pathfinding

We propose a novel complete algorithm for multi-agent pathfinding (MAPF)...

An Optimal Algorithm to Solve the Combined Task Allocation and Path Finding Problem

We consider multi-agent transport task problems where, e.g. in a factory...

Improving LaCAM for Scalable Eventually Optimal Multi-Agent Pathfinding

This study extends the recently-developed LaCAM algorithm for multi-agen...

Proximal operators for multi-agent path planning

We address the problem of planning collision-free paths for multiple age...

winPIBT: Extended Prioritized Algorithm for Iterative Multi-agent Path Finding

Providing agents with efficient paths so as not to collide with each oth...

Code Repositories


Iterative Refinement for Real-Time Multi-Robot Path Planning

view repo

Please sign up or login with your details

Forgot password? Click here to reset