DeepAI AI Chat
Log In Sign Up

Interquantile Shrinkage in Spatial Quantile Autoregressive Regression models

by   Ping Dong, et al.
NetEase, Inc

Spatial dependent data frequently occur in many fields such as spatial econometrics and epidemiology. To deal with the dependence of variables and estimate quantile-specific effects by covariates, spatial quantile autoregressive models (SQAR models) are introduced. Conventional quantile regression only focuses on the fitting models but ignores the examination of multiple conditional quantile functions, which provides a comprehensive view of the relationship between the response and covariates. Thus, it is necessary to study the different regression slopes at different quantiles, especially in situations where the quantile coefficients share some common feature. However, traditional Wald multiple tests not only increase the burden of computation but also bring greater FDR. In this paper, we transform the estimation and examination problem into a penalization problem, which estimates the parameters at different quantiles and identifies the interquantile commonality at the same time. To avoid the endogeneity caused by the spatial lag variables in SQAR models, we also introduce instrumental variables before estimation and propose two-stage estimation methods based on fused adaptive LASSO and fused adaptive sup-norm penalty approaches. The oracle properties of the proposed estimation methods are established. Through numerical investigations, it is demonstrated that the proposed methods lead to higher estimation efficiency than the traditional quantile regression.


page 1

page 2

page 3

page 4


Parametric Modeling of Quantile Regression Coefficient Functions with Longitudinal Data

In ordinary quantile regression, quantiles of different order are estima...

Quantile regression for compositional covariates

Quantile regression is a very important tool to explore the relationship...

Change-point detection in a linear model by adaptive fused quantile method

A novel approach to quantile estimation in multivariate linear regressio...

Does agricultural subsidies foster Italian southern farms? A Spatial Quantile Regression Approach

During the last decades, public policies become a central pillar in supp...

Adaptive Sampling to Estimate Quantiles for Guiding Physical Sampling

Scientists interested in studying natural phenomena often take physical ...

Generative Quantile Regression with Variability Penalty

Quantile regression and conditional density estimation can reveal struct...

Canonical Regression Quantiles with application to CEO compensation and predicting company performance

In using multiple regression methods for prediction, one often considers...