Incrementalizing RASA's Open-Source Natural Language Understanding Pipeline

07/11/2019
by   Andrew Rafla, et al.
0

As spoken dialogue systems and chatbots are gaining more widespread adoption, commercial and open-sourced services for natural language understanding are emerging. In this paper, we explain how we altered the open-source RASA natural language understanding pipeline to process incrementally (i.e., word-by-word), following the incremental unit framework proposed by Schlangen and Skantze. To do so, we altered existing RASA components to process incrementally, and added an update-incremental intent recognition model as a component to RASA. Our evaluations on the Snips dataset show that our changes allow RASA to function as an effective incremental natural language understanding service.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset