Improving dual-arm assembly by master-slave compliance

02/19/2019
by   Markku Suomalainen, et al.
0

In this paper we show how different choices regarding compliance affect a dual-arm assembly task. In addition, we present how the compliance parameters can be learned from a human demonstration. Compliant motions can be used in assembly tasks to mitigate pose errors originating from, for example, inaccurate grasping. We present analytical background and accompanying experimental results on how to choose the center of compliance to enhance the convergence region of an alignment task. Then we present the possible ways of choosing the compliant axes for accomplishing alignment in a scenario where orientation error is present. We show that an earlier presented Learning from Demonstration method can be used to learn motion and compliance parameters of an impedance controller for both manipulators. The learning requires a human demonstration with a single teleoperated manipulator only, easing the execution of demonstration and enabling usage of manipulators at difficult locations as well. Finally, we experimentally verify our claim that having both manipulators compliant in both rotation and translation can accomplish the alignment task with less total joint motions and in shorter time than moving one manipulator only. In addition, we show that the learning method produces the parameters that achieve the best results in our experiments.

READ FULL TEXT
research
09/05/2018

Learning 6-D compliant motion primitives from demonstration

We present a novel method for learning 6-D compliant motions from demons...
research
12/20/2021

Prioritized Hierarchical Compliance Control for Dual-Arm Robot Stable Clamping

When a dual-arm robot clamps a rigid object in an environment for human ...
research
11/20/2021

Imitation and Supervised Learning of Compliance for Robotic Assembly

We present the design of a learning-based compliance controller for asse...
research
07/28/2023

High-speed electrical connector assembly by structured compliance in a finray-effect gripper

Fine assembly tasks such as electrical connector insertion have tight to...
research
09/02/2018

Learning from Demonstration for Hydraulic Manipulators

This paper presents, for the first time, a method for learning in-contac...
research
05/11/2019

Fast Skill Learning for Variable Compliance Robotic Assembly

The robotic assembly represents a group of benchmark problems for reinfo...
research
02/15/2021

Interface Compliance of Inline Assembly: Automatically Check, Patch and Refine

Inline assembly is still a common practice in low-level C programming, t...

Please sign up or login with your details

Forgot password? Click here to reset