Improved Detection Strategies for Nonlinear Frequency-Division Multiplexing

05/05/2018 ∙ by Stella Civelli, et al. ∙ Scuola Superiore Sant'Anna 0

Two novel detection strategies for nonlinear Fourier transform-based transmission schemes are proposed. We show, through numerical simulations, that both strategies achieve a good performance improvement (up to 3 dB and 5 dB) with respect to conventional detection, respectively without or only moderately increasing the computational complexity of the receiver.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

Bibliography

  • [1]

    A. Hasegawa and T. Nyu, “Eigenvalue communication,”

    J. Lightwave Technol., vol. 11, no. 3, pp. 395–399, Mar. 1993.
  • [2] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, and S. A. Derevyanko, “Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives,” Optica, vol. 4, no. 3, pp. 307–322, 2017.
  • [3] M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Parts I–III,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4312–4369, Jul. 2014.
  • [4] M. I. Yousefi and X. Yangzhang, “Linear and nonlinear frequency-division multiplexing,” European Conference on Optical Communication (ECOC 2016), Proceedings of, 2016.
  • [5] M. Kamalian, J. E. Prilepsky, S. T. Le, and S. K. Turitsyn, “Periodic nonlinear Fourier transform for fiber-optic communication, part ii: Eigenvalue communication,” Opt. Express, vol. 24, no. 16, pp. 18 370–18 381, 2016.
  • [6] S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, “Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers,” Opt. Express, vol. 22, no. 22, pp. 26 720–26 741, 2014.
  • [7] S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the kerr nonlinearity limit,” Nature Photonics, vol. 11, no. 9, p. 570, 2017.
  • [8] S. Civelli, E. Forestieri, and M. Secondini, “Why noise and dispersion may seriously hamper nonlinear frequency-division multiplexing,” IEEE Photonics Technology Letters, vol. 29, no. 16, pp. 1332–1335, August 2017.
  • [9] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys.-JETP, vol. 34, no. 1, pp. 62–69, 1972.
  • [10] S. Civelli, E. Forestieri, and M. Secondini, “A novel detection strategy for nonlinear frequency-division multiplexing,” in Optical Fiber Communication Conference.   Optical Society of America, 2018, pp. W1G–5.
  • [11] ——, “Decision-feedback detection strategy for nonlinear frequency-division multiplexing,” Opt. Express, vol. 26, no. 9, pp. 12 057–12 071, Apr 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-9-12057
  • [12] S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity estimates for optical transmission based on the nonlinear Fourier transform,” Nature Communications, 2016. [Online]. Available: http://dx.doi.org/10.1038/ncomms12710
  • [13] I. Tavakkolnia and M. Safari, “Dispersion pre-compensation for NFT-based optical fiber communication systems,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, 2016.
  • [14] S. Civelli, L. Barletti, and M. Secondini, “Numerical methods for the inverse nonlinear Fourier transform,” in Proc. Tyrrhenian Int. Workshop Digital Communications (TIWDC), Florence, Italy, Sep. 2015, pp. 13–16.