Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning
The field of image reconstruction has undergone four waves of methods. The first wave was analytical methods, such as filtered back-projection (FBP) for X-ray computed tomography (CT) and the inverse Fourier transform for magnetic resonance imaging (MRI), based on simple mathematical models for the imaging systems. These methods are typically fast, but have suboptimal properties such as poor resolution-noise trade-off for CT. The second wave was iterative reconstruction methods based on more complete models for the imaging system physics and, where appropriate, models for the sensor statistics. These iterative methods improved image quality by reducing noise and artifacts. The FDA-approved methods among these have been based on relatively simple regularization models. The third wave of methods has been designed to accommodate modified data acquisition methods, such as reduced sampling in MRI and CT to reduce scan time or radiation dose. These methods typically involve mathematical image models involving assumptions such as sparsity or low-rank. The fourth wave of methods replaces mathematically designed models of signals and processes with data-driven or adaptive models inspired by the field of machine learning. This paper reviews the progress in image reconstruction methods with focus on the two most recent trends: methods based on sparsity or low-rank models, and data-driven methods based on machine learning techniques.
READ FULL TEXT