Homunculus' Brain and Categorical Logic
The interaction between syntax (formal language) and its semantics (meanings of language) is well studied in categorical logic. Results of this study are employed to understand how the brain could create meanings. To emphasize the toy character of the proposed model, we prefer to speak on homunculus' brain rather than just on the brain. Homunculus' brain consists of neurons, each of which is modeled by a category, and axons between neurons, which are modeled by functors between the corresponding neuron-categories. Each neuron (category) has its own program enabling its working, i.e. a "theory" of this neuron. In analogy with what is known from categorical logic, we postulate the existence of the pair of adjoint functors, called Lang and Syn, from a category, now called BRAIN, of categories, to a category, now called MIND, of theories. Our homunculus is a kind of "mathematical robot", the neuronal architecture of which is not important. Its only aim is to provide us with the opportunity to study how such a simple brain-like structure could "create meanings" out of its purely syntactic program. The pair of adjoint functors Lang and Syn models mutual dependencies between the syntactical structure of a given theory of MIND and the internal logic of its semantics given by a category of BRAIN. In this way, a formal language (syntax) and its meanings (semantics) are interwoven with each other in a manner corresponding to the adjointness of the functors Lang and Syn. Categories BRAIN and MIND interact with each other with their entire structures and, at the same time, these very structures are shaped by this interaction.
READ FULL TEXT