Higher-order Accurate Spectral Density Estimation of Functional Time Series

12/07/2018
by   Tingyi Zhu, et al.
0

Under the frequency domain framework for weakly dependent functional time series, a key element is the spectral density kernel which encapsulates the second-order dynamics of the process. We propose a class of spectral density kernel estimators based on the notion of a flat-top kernel. The new class of estimators employs the inverse Fourier transform of a flat-top function as the weight function employed to smooth the periodogram. It is shown that using a flat-top kernel yields a bias reduction and results in a higher-order accuracy in terms of optimizing the integrated mean square error (IMSE). Notably, the higher-order accuracy of flat-top estimation comes at the sacrifice of the positive semi-definite property. Nevertheless, we show how a flat-top estimator can be modified to become positive semi-definite (even strictly positive definite) in finite samples while retaining its favorable asymptotic properties. In addition, we introduce a data-driven bandwidth selection procedure realized by an automatic inspection of the estimated correlation structure. Our asymptotic results are complemented by a finite-sample simulation where the higher-order accuracy of flat-top estimators is manifested in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset