High precision numerical approach for the Davey-Stewartson II equation for Schwartz class initial data
We present an efficient high-precision numerical approach for the Davey-Stewartson (DS) II equation, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll's composite Runge-Kutta method for the time dependence. Since the DS equation is a nonlocal, nonlinear Schrödinger equation with a singular symbol for the nonlocality, standard Fourier methods in practice only reach accuracies of the order of 10^-6 or less for typical examples. This was previously demonstrated for the defocusing case by comparison with a numerical approach for DS via inverse scattering. By applying a regularization to the singular symbol, originally developed for D-bar problems, the presented code is shown to reach machine precision. The code can treat integrable and non-integrable DS II equations. Moreover, it has the same existing codes for DS II. Several examples for the integrable defocusing DS II equation are discussed as test cases. In an appendix by C. Kalla, a doubly periodic solution to the defocusing DS II equation is presented, providing a test for direct DS codes based on Fourier methods.
READ FULL TEXT