Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models

04/22/2020
by   Antonio Blanca, et al.
0

We study identity testing for restricted Boltzmann machines (RBMs), and more generally for undirected graphical models. Given sample access to the Gibbs distribution corresponding to an unknown or hidden model M^* and given an explicit model M, can we distinguish if either M = M^* or if they are (statistically) far apart? Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing for the ferromagnetic (attractive) Ising model. In contrast, for the antiferromagnetic (repulsive) Ising model, Bezáková et al. (2019) proved that unless RP=NP there is no identity testing algorithm when β d=ω(logn), where d is the maximum degree of the visible graph and β is the largest edge weight in absolute value. We prove analogous hardness results for RBMs (i.e., mixed Ising models on bipartite graphs), even when there are no latent variables or an external field. Specifically, we show that if RP ≠ NP, then when β d=ω(logn) there is no polynomial-time algorithm for identity testing for RBMs; when β d =O(logn) there is an efficient identity testing algorithm that utilizes the structure learning algorithm of Klivans and Meka (2017). In addition, we prove similar lower bounds for purely ferromagnetic RBMs with inconsistent external fields, and for the ferromagnetic Potts model. Previous hardness results for identity testing of Bezáková et al. (2019) utilized the hardness of finding the maximum cuts, which corresponds to the ground states of the antiferromagnetic Ising model. Since RBMs are on bipartite graphs such an approach is not feasible. We instead introduce a general methodology to reduce from the corresponding approximate counting problem and utilize the phase transition that is exhibited by RBMs and the mean-field Potts model.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
01/22/2019

Lower bounds for testing graphical models: colorings and antiferromagnetic Ising models

We study the identity testing problem in the context of spin systems or ...
research
03/13/2022

On the d-Claw Vertex Deletion Problem

Let d-claw (or d-star) stand for K_1,d, the complete bipartite graph wit...
research
01/06/2020

Counting Maximum Matchings in Planar Graphs Is Hard

Here we prove that counting maximum matchings in planar, bipartite graph...
research
07/19/2022

Identity Testing for High-Dimensional Distributions via Entropy Tensorization

We present improved algorithms and matching statistical and computationa...
research
06/07/2020

Learning Restricted Boltzmann Machines with Few Latent Variables

Restricted Boltzmann Machines (RBMs) are a common family of undirected g...
research
06/15/2019

Learning Restricted Boltzmann Machines with Arbitrary External Fields

We study the problem of learning graphical models with latent variables....
research
05/05/2021

Identity testing under label mismatch

Testing whether the observed data conforms to a purported model (probabi...

Please sign up or login with your details

Forgot password? Click here to reset