GRIP: A Graph Neural Network Accelerator Architecture

07/27/2020
by   Kevin Kiningham, et al.
0

We present GRIP, a graph neural network accelerator architecture designed for low-latency inference. AcceleratingGNNs is challenging because they combine two distinct types of computation: arithmetic-intensive vertex-centric operations and memory-intensive edge-centric operations. GRIP splits GNN inference into a fixed set of edge- and vertex-centric execution phases that can be implemented in hardware. We then specialize each unit for the unique computational structure found in each phase.For vertex-centric phases, GRIP uses a high performance matrix multiply engine coupled with a dedicated memory subsystem for weights to improve reuse. For edge-centric phases, GRIP use multiple parallel prefetch and reduction engines to alleviate the irregularity in memory accesses. Finally, GRIP supports severalGNN optimizations, including a novel optimization called vertex-tiling which increases the reuse of weight data.We evaluate GRIP by performing synthesis and place and route for a 28nm implementation capable of executing inference for several widely-used GNN models (GCN, GraphSAGE, G-GCN, and GIN). Across several benchmark graphs, it reduces 99th percentile latency by a geometric mean of 17x and 23x compared to a CPU and GPU baseline, respectively, while drawing only 5W.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro