Graph Neural Networks-based Hybrid Framework For Predicting Particle Crushing Strength

07/26/2023
by   Tongya Zheng, et al.
0

Graph Neural Networks have emerged as an effective machine learning tool for multi-disciplinary tasks such as pharmaceutical molecule classification and chemical reaction prediction, because they can model non-euclidean relationships between different entities. Particle crushing, as a significant field of civil engineering, describes the breakage of granular materials caused by the breakage of particle fragment bonds under the modeling of numerical simulations, which motivates us to characterize the mechanical behaviors of particle crushing through the connectivity of particle fragments with Graph Neural Networks (GNNs). However, there lacks an open-source large-scale particle crushing dataset for research due to the expensive costs of laboratory tests or numerical simulations. Therefore, we firstly generate a dataset with 45,000 numerical simulations and 900 particle types to facilitate the research progress of machine learning for particle crushing. Secondly, we devise a hybrid framework based on GNNs to predict particle crushing strength in a particle fragment view with the advances of state of the art GNNs. Finally, we compare our hybrid framework against traditional machine learning methods and the plain MLP to verify its effectiveness. The usefulness of different features is further discussed through the gradient attribution explanation w.r.t the predictions. Our data and code are released at https://github.com/doujiang-zheng/GNN-For-Particle-Crushing.

READ FULL TEXT
research
07/08/2020

Graph Neural Networks for the Prediction of Substrate-Specific Organic Reaction Conditions

We present a systematic investigation using graph neural networks (GNNs)...
research
11/25/2022

Interpreting Unfairness in Graph Neural Networks via Training Node Attribution

Graph Neural Networks (GNNs) have emerged as the leading paradigm for so...
research
11/16/2021

Inferring halo masses with Graph Neural Networks

Understanding the halo-galaxy connection is fundamental in order to impr...
research
11/24/2021

Explaining machine-learned particle-flow reconstruction

The particle-flow (PF) algorithm is used in general-purpose particle det...
research
08/23/2022

Doc2Graph: a Task Agnostic Document Understanding Framework based on Graph Neural Networks

Geometric Deep Learning has recently attracted significant interest in a...
research
07/22/2022

Transformer with Implicit Edges for Particle-based Physics Simulation

Particle-based systems provide a flexible and unified way to simulate ph...

Please sign up or login with your details

Forgot password? Click here to reset