Generic bounds on the approximation error for physics-informed (and) operator learning

05/23/2022
by   Tim De Ryck, et al.
0

We propose a very general framework for deriving rigorous bounds on the approximation error for physics-informed neural networks (PINNs) and operator learning architectures such as DeepONets and FNOs as well as for physics-informed operator learning. These bounds guarantee that PINNs and (physics-informed) DeepONets or FNOs will efficiently approximate the underlying solution or solution operator of generic partial differential equations (PDEs). Our framework utilizes existing neural network approximation results to obtain bounds on more involved learning architectures for PDEs. We illustrate the general framework by deriving the first rigorous bounds on the approximation error of physics-informed operator learning and by showing that PINNs (and physics-informed DeepONets and FNOs) mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset