Generative Modeling of Hidden Functional Brain Networks

12/20/2014
by   Shaurabh Nandy, et al.
0

Functional connectivity refers to the temporal statistical relationship between spatially distinct brain regions and is usually inferred from the time series coherence/correlation in brain activity between regions of interest. In human functional brain networks, the network structure is often inferred from functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal. Since the BOLD signal is a proxy for neuronal activity, it is of interest to learn the latent functional network structure. Additionally, despite a core set of observations about functional networks such as small-worldness, modularity, exponentially truncated degree distributions, and presence of various types of hubs, very little is known about the computational principles which can give rise to these observations. This paper introduces a Hidden Markov Random Field framework for the purpose of representing, estimating, and evaluating latent neuronal functional relationships between different brain regions using fMRI data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro