Gaussian-Chain Filters for Heavy-Tailed Noise with Application to Detecting Big Buyers and Big Sellers in Stock Market

05/09/2014
by   Li-Xin Wang, et al.
0

We propose a new heavy-tailed distribution --- Gaussian-Chain (GC) distribution, which is inspirited by the hierarchical structures prevailing in social organizations. We determine the mean, variance and kurtosis of the Gaussian-Chain distribution to show its heavy-tailed property, and compute the tail distribution table to give specific numbers showing how heavy is the heavy-tails. To filter out the heavy-tailed noise, we construct two filters --- 2nd and 3rd-order GC filters --- based on the maximum likelihood principle. Simulation results show that the GC filters perform much better than the benchmark least-squares algorithm when the noise is heavy-tail distributed. Using the GC filters, we propose a trading strategy, named Ride-the-Mood, to follow the mood of the market by detecting the actions of the big buyers and the big sellers in the market based on the noisy, heavy-tailed price data. Application of the Ride-the-Mood strategy to five blue-chip Hong Kong stocks over the recent two-year period from April 2, 2012 to March 31, 2014 shows that their returns are higher than the returns of the benchmark Buy-and-Hold strategy and the Hang Seng Index Fund.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro