GAPP: A Fast Profiler for Detecting Serialization Bottlenecks in Parallel Linux Applications

04/12/2020
by   Reena Nair, et al.
0

We present a parallel profiling tool, GAPP, that identifies serialization bottlenecks in parallel Linux applications arising from load imbalance or contention for shared resources . It works by tracing kernel context switch events using kernel probes managed by the extended Berkeley Packet Filter (eBPF) framework. The overhead is thus extremely low (an average 4 overhead for the applications explored), the tool requires no program instrumentation and works for a variety of serialization bottlenecks. We evaluate GAPP using the Parsec3.0 benchmark suite and two large open-source projects: MySQL and Nektar++ (a spectral/hp element framework). We show that GAPP is able to reveal a wide range of bottleneck-related performance issues, for example arising from synchronization primitives, busy-wait loops, memory operations, thread imbalance and resource contention.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro