Fourier Analysis-based Iterative Combinatorial Auctions

09/22/2020
by   Jakob Weissteiner, et al.
0

Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of iterative combinatorial auctions. The key idea is to approximate the bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for real-world auctions, we propose a novel hybrid auction design: we first use neural networks to learn bidders' values and then apply Fourier analysis to those learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative mechanism that asks Fourier-based queries. Our experimental evaluation shows that our hybrid auction leads to a fairer distribution of social welfare among bidders and significantly reduces runtime, while matching the economic efficiency of state-of-the-art auction designs. With this paper, we are the first to leverage Fourier analysis in combinatorial auction design and lay the foundation for future work in this area.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 14

11/19/2019

Machine Learning-powered Iterative Combinatorial Auctions

In this paper, we present a machine learning-powered iterative combinato...
07/12/2019

Deep Learning-powered Iterative Combinatorial Auctions

In this paper, we study the design of deep learning-powered iterative co...
09/30/2021

Monotone-Value Neural Networks: Exploiting Preference Monotonicity in Combinatorial Assignment

Many important resource allocation problems involve the combinatorial as...
09/28/2020

Machine Learning-powered Iterative Combinatorial Auctions with Interval Bidding

We study the design of iterative combinatorial auctions for domains with...
10/01/2020

Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases

Many applications of machine learning on discrete domains, such as learn...
07/20/2019

Bidding for Preferred Timing: An Auction Design for Electric Vehicle Charging Station Scheduling

This paper considers an electric vehicle charging scheduling setting whe...
01/16/2014

Multiattribute Auctions Based on Generalized Additive Independence

We develop multiattribute auctions that accommodate generalized additive...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.