Filaments of crime: Informing policing via thresholded ridge estimation
Objectives: We introduce a new method for reducing crime in hot spots and across cities through ridge estimation. In doing so, our goal is to explore the application of density ridges to hot spots and patrol optimization, and to contribute to the policing literature in police patrolling and crime reduction strategies. Methods: We make use of the subspace-constrained mean shift algorithm, a recently introduced approach for ridge estimation further developed in cosmology, which we modify and extend for geospatial datasets and hot spot analysis. Our experiments extract density ridges of Part I crime incidents from the City of Chicago during the year 2018 and early 2019 to demonstrate the application to current data. Results: Our results demonstrate nonlinear mode-following ridges in agreement with broader kernel density estimates. Using early 2019 incidents with predictive ridges extracted from 2018 data, we create multi-run confidence intervals and show that our patrol templates cover around 94 0.1-mile envelopes around ridges, quickly rising to near-complete coverage. We also develop and provide researchers, as well as practitioners, with a user-friendly and open-source software for fast geospatial density ridge estimation. Conclusions: We show that ridges following crime report densities can be used to enhance patrolling capabilities. Our empirical tests show the stability of ridges based on past data, offering an accessible way of identifying routes within hot spots instead of patrolling epicenters. We suggest further research into the application and efficacy of density ridges for patrolling.
READ FULL TEXT