Fault Tolerant Control for Networked Mobile Robots

06/06/2018
by   Pietro Pierpaoli, et al.
0

Teams of networked autonomous agents have been used in a number of applications, such as mobile sensor networks and intelligent transportation systems. However, in such systems, the effect of faults and errors in one or more of the sub-systems can easily spread throughout the network, quickly degrading the performance of the entire system. In consensus-driven dynamics, the effects of faults are particularly relevant because of the presence of unconstrained rigid modes in the transfer function of the system. Here, we propose a two-stage technique for the identification and accommodation of a biased-measurements agent, in a network of mobile robots with time invariant interaction topology. We assume these interactions to take place only in the form of relative position measurements. A fault identification filter deployed on a single observer agent is used to estimate a single fault occurring anywhere in the network. Once the fault is detected, an optimal leader-based accommodation strategy is initiated. Results are presented by means of numerical simulations and robot experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset