FAST: Searching for a Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation
We propose an accurate and efficient scene text detection framework, termed FAST (i.e., faster arbitrarily-shaped text detector). Different from recent advanced text detectors that used hand-crafted network architectures and complicated post-processing, resulting in low inference speed, FAST has two new designs. (1) We search the network architecture by designing a network search space and reward function carefully tailored for text detection, leading to more powerful features than most networks that are searched for image classification. (2) We design a minimalist representation (only has 1-channel output) to model text with arbitrary shape, as well as a GPU-parallel post-processing to efficiently assemble text lines with negligible time overhead. Benefiting from these two designs, FAST achieves an excellent trade-off between accuracy and efficiency on several challenging datasets. For example, FAST-A0 yields 81.4 the previous fastest method by 1.5 points and 70 FPS in terms of accuracy and speed. With TensorRT optimization, the inference speed can be further accelerated to over 600 FPS.
READ FULL TEXT