F0 Modeling In Hmm-Based Speech Synthesis System Using Deep Belief Network
In recent years multilayer perceptrons (MLPs) with many hid- den layers Deep Neural Network (DNN) has performed sur- prisingly well in many speech tasks, i.e. speech recognition, speaker verification, speech synthesis etc. Although in the context of F0 modeling these techniques has not been ex- ploited properly. In this paper, Deep Belief Network (DBN), a class of DNN family has been employed and applied to model the F0 contour of synthesized speech which was generated by HMM-based speech synthesis system. The experiment was done on Bengali language. Several DBN-DNN architectures ranging from four to seven hidden layers and up to 200 hid- den units per hidden layer was presented and evaluated. The results were compared against clustering tree techniques pop- ularly found in statistical parametric speech synthesis. We show that from textual inputs DBN-DNN learns a high level structure which in turn improves F0 contour in terms of ob- jective and subjective tests.
READ FULL TEXT