Evolution and Analysis of Embodied Spiking Neural Networks Reveals Task-Specific Clusters of Effective Networks

04/13/2017
by   Madhavun Candadai Vasu, et al.
0

Elucidating principles that underlie computation in neural networks is currently a major research topic of interest in neuroscience. Transfer Entropy (TE) is increasingly used as a tool to bridge the gap between network structure, function, and behavior in fMRI studies. Computational models allow us to bridge the gap even further by directly associating individual neuron activity with behavior. However, most computational models that have analyzed embodied behaviors have employed non-spiking neurons. On the other hand, computational models that employ spiking neural networks tend to be restricted to disembodied tasks. We show for the first time the artificial evolution and TE-analysis of embodied spiking neural networks to perform a cognitively-interesting behavior. Specifically, we evolved an agent controlled by an Izhikevich neural network to perform a visual categorization task. The smallest networks capable of performing the task were found by repeating evolutionary runs with different network sizes. Informational analysis of the best solution revealed task-specific TE-network clusters, suggesting that within-task homogeneity and across-task heterogeneity were key to behavioral success. Moreover, analysis of the ensemble of solutions revealed that task-specificity of TE-network clusters correlated with fitness. This provides an empirically testable hypothesis that links network structure to behavior.

READ FULL TEXT

page 5

page 6

page 7

research
03/04/2019

Evolving Spiking Neural Networks for Nonlinear Control Problems

Spiking Neural Networks are powerful computational modelling tools that ...
research
06/29/2023

Decomposing spiking neural networks with Graphical Neural Activity Threads

A satisfactory understanding of information processing in spiking neural...
research
03/31/2023

Equivalence of Additive and Multiplicative Coupling in Spiking Neural Networks

Spiking neural network models characterize the emergent collective dynam...
research
10/15/2021

Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity

Neuro-inspired models and systems have great potential for applications ...
research
04/12/2022

Toward Robust Spiking Neural Network Against Adversarial Perturbation

As spiking neural networks (SNNs) are deployed increasingly in real-worl...
research
06/19/2020

Oscillatory background activity implements a backbone for sampling-based computations in spiking neural networks

Various data suggest that the brain carries out probabilistic inference....
research
06/06/2017

Information Bottleneck in Control Tasks with Recurrent Spiking Neural Networks

The nervous system encodes continuous information from the environment i...

Please sign up or login with your details

Forgot password? Click here to reset