ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building

by   Hyungtae Lim, et al.

Scan data of urban environments often include representations of dynamic objects, such as vehicles, pedestrians, and so forth. However, when it comes to constructing a 3D point cloud map with sequential accumulations of the scan data, the dynamic objects often leave unwanted traces in the map. These traces of dynamic objects act as obstacles and thus impede mobile vehicles from achieving good localization and navigation performances. To tackle the problem, this paper presents a novel static map building method called ERASOR, Egocentric RAtio of pSeudo Occupancy-based dynamic object Removal, which is fast and robust to motion ambiguity. Our approach directs its attention to the nature of most dynamic objects in urban environments being inevitably in contact with the ground. Accordingly, we propose the novel concept called pseudo occupancy to express the occupancy of unit space and then discriminate spaces of varying occupancy. Finally, Region-wise Ground Plane Fitting (R-GPF) is adopted to distinguish static points from dynamic points within the candidate bins that potentially contain dynamic points. As experimentally verified on SemanticKITTI, our proposed method yields promising performance against state-of-the-art methods overcoming the limitations of existing ray tracing-based and visibility-based methods.


page 1

page 3

page 7


Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Ground segmentation is crucial for terrestrial mobile platforms to perfo...

DynamicFilter: an Online Dynamic Objects Removal Framework for Highly Dynamic Environments

Emergence of massive dynamic objects will diversify spatial structures w...

RH-Map: Online Map Construction Framework of Dynamic Objects Removal Based on Region-wise Hash Map Structure

Mobile robots operating in outdoor environments frequently encounter the...

A Dynamic Points Removal Benchmark in Point Cloud Maps

In the field of robotics, the point cloud has become an essential map re...

Leveraging Stereo-Camera Data for Real-Time Dynamic Obstacle Detection and Tracking

Dynamic obstacle avoidance is one crucial component for compliant naviga...

Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation

Mobile robots that navigate in unknown environments need to be constantl...

A Rigorously Bayesian Beam Model and an Adaptive Full Scan Model for Range Finders in Dynamic Environments

This paper proposes and experimentally validates a Bayesian network mode...

Please sign up or login with your details

Forgot password? Click here to reset