DeepAI AI Chat
Log In Sign Up

Enhancing the functional content of protein interaction networks

by   Gaurav Pandey, et al.
Icahn School of Medicine at Mount Sinai

Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, they face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we explore the use of the concept of common neighborhood similarity (CNS), which is a form of local structure in networks, to address these issues. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of S. cerevisiae interactions, and a set of 136 GO terms, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the HC.cont measure proposed here performs particularly well for this task. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures, especially HC.cont, to prune out noisy edges and introduce new links between functionally related proteins.


page 1

page 2

page 3

page 4


Computational prediction and analysis of protein-protein interaction networks

Biological networks provide insight into the complex organization of bio...

An information-theoretic, all-scales approach to comparing networks

As network research becomes more sophisticated, it is more common than e...

Identifying similar functional modules by a new hybrid spectral clustering method

Recently, a large number of researches have focused on finding cellular ...

Quantitative Evaluation of Snapshot Graphs for the Analysis of Temporal Networks

One of the most common approaches to the analysis of dynamic networks is...

On function homophily of microbial Protein-Protein Interaction Networks

We present a new method for assessing homophily in networks whose vertic...

A Centrality Measure for Cycles and Subgraphs II

In a recent work we introduced a measure of importance for groups of ver...