Enhancing Feasibility and Safety of Nonlinear Model Predictive Control with Discrete-Time Control Barrier Functions

05/21/2021
by   Jun Zeng, et al.
0

Safety is one of the fundamental problems in robotics. Recently, one-step or multi-step optimal control problems for discrete-time nonlinear dynamical system are formulated to offer tracking stability using control Lyapunov functions (CLFs) while subject to input constraints as well as safety-critical constraints using control barrier functions (CBFs). The limitations of these existing approaches are mainly about feasibility and safety. In the existing approaches, the optimization feasibility and the system safety cannot be enhanced at the same time theoretically. In this paper, we propose two formulations that unifies CLFs and CBFs under the framework of nonlinear model predictive control (NMPC). In the proposed formulations, safety criteria is commonly formulated as CBF constraints and stability performance is ensured with either a terminal cost function or CLF constraints. Relaxing variables are introduced on the CBF constraints to resolve the tradeoff between feasibility and safety so that they can be enhanced at the same. The advantages about feasibility and safety of proposed formulations compared with existing methods are analyzed theoretically and validated with numerical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset