Enabling Un-/Semi-Supervised Machine Learning for MDSE of the Real-World CPS/IoT Applications
In this paper, we propose a novel approach to support domain-specific Model-Driven Software Engineering (MDSE) for the real-world use-case scenarios of smart Cyber-Physical Systems (CPS) and the Internet of Things (IoT). We argue that the majority of available data in the nature for Artificial Intelligence (AI), specifically Machine Learning (ML) are unlabeled. Hence, unsupervised and/or semi-supervised ML approaches are the practical choices. However, prior work in the literature of MDSE has considered supervised ML approaches, which only work with labeled training data. Our proposed approach is fully implemented and integrated with an existing state-of-the-art MDSE tool to serve the CPS/IoT domain. Moreover, we validate the proposed approach using a portion of the open data of the REFIT reference dataset for the smart energy systems domain. Our model-to-code transformations (code generators) provide the full source code of the desired IoT services out of the model instances in an automated manner. Currently, we generate the source code in Java and Python. The Python code is responsible for the ML functionalities and uses the APIs of several ML libraries and frameworks, namely Scikit-Learn, Keras and TensorFlow. For unsupervised and semi-supervised learning, the APIs of Scikit-Learn are deployed. In addition to the pure MDSE approach, where certain ML methods, e.g., K-Means, Mini-Batch K-Means, DB-SCAN, Spectral Clustering, Gaussian Mixture Model, Self-Training, Label Propagation and Label Spreading are supported, a more flexible, hybrid approach is also enabled to support the practitioner in deploying a pre-trained ML model with any arbitrary architecture and learning algorithm.
READ FULL TEXT