Electrochemical transport modelling and open-source simulation of pore-scale solid-liquid systems

12/27/2022
by   Robert Barnett, et al.
0

The modelling of electrokinetic flows is a critical aspect spanning many industrial applications and research fields. This has introduced great demand in flexible numerical solvers to describe these flows. The underlying phenomena is microscopic, non-linear, and often involving multiple domains. Therefore often model assumptions and several numerical approximations are introduced to simplify the solution. In this work we present a multi-domain multi-species electrokinetic flow model including complex interface and bulk reactions. After a dimensional analysis and an overview of some limiting regimes, we present a set of general-purpose finite-volume solvers, based on OpenFOAM(R), capable of describing an arbitrary number of electrochemical species over multiple interacting (solid or fluid) domains. We provide a verification of the computational approach for several cases involving electrokinetic flows, reactions between species, and complex geometries. We first present three one-dimensional verification test-cases for single- and multi-domain cases and then show the capability of the solver to tackle two- and three-dimensional electrically driven flows and ionic transport in random porous structures. The purpose of this work is to lay the foundation of a general-purpose open-source flexible modelling tool for problems in electrochemistry and electrokinetics at different scales.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro