Efficient Integration of Multi-channel Information for Speaker-independent Speech Separation
Although deep-learning-based methods have markedly improved the performance of speech separation over the past few years, it remains an open question how to integrate multi-channel signals for speech separation. We propose two methods, namely, early-fusion and late-fusion methods, to integrate multi-channel information based on the time-domain audio separation network, which has been proven effective in single-channel speech separation. We also propose channel-sequential-transfer learning, which is a transfer learning framework that applies the parameters trained for a lower-channel network as the initial values of a higher-channel network. For fair comparison, we evaluated our proposed methods using a spatialized version of the wsj0-2mix dataset, which is open-sourced. It was found that our proposed methods can outperform multi-channel deep clustering and improve the performance proportionally to the number of microphones. It was also proven that the performance of the late-fusion method is consistently higher than that of the single-channel method regardless of the angle difference between speakers.
READ FULL TEXT