Early Output Hybrid Input Encoded Asynchronous Full Adder and Relative-Timed Ripple Carry Adder
This paper presents a new early output hybrid input encoded asynchronous full adder designed using dual-rail and 1-of-4 delay-insensitive data codes. The proposed full adder when cascaded to form a ripple carry adder (RCA) necessitates the use of a small relative-timing assumption with respect to the internal carries, which is independent of the RCA size. The forward latency of the proposed hybrid input encoded full adder based RCA is data-dependent while its reverse latency is the least equaling the propagation delay of just one full adder. Compared to the best of the existing hybrid input encoded full adders based 32-bit RCAs, the proposed early output hybrid input encoded full adder based 32-bit RCA enables respective reductions in forward latency and area by 7.9 the theoretically computed cycle time, the latter reports a 10.9 compared to the former.
READ FULL TEXT