Dynamic Backdoors with Global Average Pooling

03/04/2022
by   Stefanos Koffas, et al.
0

Outsourced training and machine learning as a service have resulted in novel attack vectors like backdoor attacks. Such attacks embed a secret functionality in a neural network activated when the trigger is added to its input. In most works in the literature, the trigger is static, both in terms of location and pattern. The effectiveness of various detection mechanisms depends on this property. It was recently shown that countermeasures in image classification, like Neural Cleanse and ABS, could be bypassed with dynamic triggers that are effective regardless of their pattern and location. Still, such backdoors are demanding as they require a large percentage of poisoned training data. In this work, we are the first to show that dynamic backdoor attacks could happen due to a global average pooling layer without increasing the percentage of the poisoned training data. Nevertheless, our experiments in sound classification, text sentiment analysis, and image classification show this to be very difficult in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset