Duality pairs and homomorphisms to oriented and un-oriented cycles

03/12/2020
by   Santiago Guzmán-Pro, et al.
0

In the homomorphism order of digraphs, a duality pair is an ordered pair of digraphs (G,H) such that for any digraph, D, G→ D if and only if D↛H. The directed path on k+1 vertices together with the transitive tournament on k vertices is a classic example of a duality pair. This relation between paths and tournaments implies that a graph is k-colourable if and only if it admits an orientation with no directed path on more than k-vertices. In this work, for every undirected cycle C we find an orientation C_D and an oriented path P_C, such that (P_C,C_D) is a duality pair. As a consequence we obtain that there is a finite set, F_C, such that an undirected graph is homomorphic to C, if and only if it admits an F_C-free orientation. As a byproduct of the proposed duality pairs, we show that if T is a tree of height at most 3, one can choose a dual of T of linear size with respect to the size of T.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro