DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN

08/26/2021
by   Yu Wang, et al.
0

In the information explosion era, recommender systems (RSs) are widely studied and applied to discover user-preferred information. A RS performs poorly when suffering from the cold-start issue, which can be alleviated if incorporating Knowledge Graphs (KGs) as side information. However, most existing works neglect the facts that node degrees in KGs are skewed and massive amount of interactions in KGs are recommendation-irrelevant. To address these problems, in this paper, we propose Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN (DSKReG) that learns the relevance distribution of connected items from KGs and samples suitable items for recommendation following this distribution. We devise a differentiable sampling strategy, which enables the selection of relevant items to be jointly optimized with the model training procedure. The experimental results demonstrate that our model outperforms state-of-the-art KG-based recommender systems. The code is available online at https://github.com/YuWang-1024/DSKReG.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset