Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion

08/12/2020
by   Brian Swenson, et al.
0

The paper considers distributed gradient flow (DGF) for multi-agent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The paper has two main contributions. First, the paper considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The paper then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the paper proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion paper, analogous results are derived for discrete-time algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset