Disentangling Aspect and Opinion Words in Target-based Sentiment Analysis using Lifelong Learning

02/16/2018
by   Shuai Wang, et al.
0

Given a target name, which can be a product aspect or entity, identifying its aspect words and opinion words in a given corpus is a fine-grained task in target-based sentiment analysis (TSA). This task is challenging, especially when we have no labeled data and we want to perform it for any given domain. To address it, we propose a general two-stage approach. Stage one extracts/groups the target-related words (call t-words) for a given target. This is relatively easy as we can apply an existing semantics-based learning technique. Stage two separates the aspect and opinion words from the grouped t-words, which is challenging because we often do not have enough word-level aspect and opinion labels. In this work, we formulate this problem in a PU learning setting and incorporate the idea of lifelong learning to solve it. Experimental results show the effectiveness of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset