Disease State Prediction From Single-Cell Data Using Graph Attention Networks

02/14/2020
by   Neal G. Ravindra, et al.
0

Single-cell RNA sequencing (scRNA-seq) has revolutionized biological discovery, providing an unbiased picture of cellular heterogeneity in tissues. While scRNA-seq has been used extensively to provide insight into health and disease, it has not been used for disease prediction or diagnostics. Graph Attention Networks have proven to be versatile for a wide range of tasks by learning from both original features and graph structures. Here we present a graph attention model for predicting disease state from single-cell data on a large dataset of Multiple Sclerosis (MS) patients. MS is a disease of the central nervous system that is difficult to diagnose. We train our model on single-cell data obtained from blood and cerebrospinal fluid (CSF) for a cohort of seven MS patients and six healthy adults (HA), resulting in 66,667 individual cells. We achieve 92% accuracy in predicting MS, outperforming other state-of-the-art methods such as a graph convolutional network, random forest, and multi-layer perceptron. Further, we use the learned graph attention model to get insight into the features (cell types and genes) that are important for this prediction. The graph attention model also allow us to infer a new feature space for the cells that emphasizes the difference between the two conditions. Finally we use the attention weights to learn a new low-dimensional embedding which we visualize with PHATE and UMAP. To the best of our knowledge, this is the first effort to use graph attention, and deep learning in general, to predict disease state from single-cell data. We envision applying this method to single-cell data for other diseases.

READ FULL TEXT
research
09/11/2021

Sickle Cell Disease Severity Prediction from Percoll Gradient Images using Graph Convolutional Networks

Sickle cell disease (SCD) is a severe genetic hemoglobin disorder that r...
research
06/23/2020

Gaining insight into SARS-CoV-2 infection and COVID-19 severity using self-supervised edge features and Graph Neural Networks

Graph Neural Networks (GNN) have been extensively used to extract meanin...
research
10/13/2021

CloudPred: Predicting Patient Phenotypes From Single-cell RNA-seq

Single-cell RNA sequencing (scRNA-seq) has the potential to provide powe...
research
01/18/2022

Interpretable Single-Cell Set Classification with Kernel Mean Embeddings

Modern single-cell flow and mass cytometry technologies measure the expr...
research
11/06/2022

Multilayer Perceptron Network Discriminates Larval Zebrafish Genotype using Behaviour

Zebrafish are a common model organism used to identify new disease thera...
research
08/03/2020

Segmenting overlapped objects in images. A study to support the diagnosis of sickle cell disease

Overlapped objects are found on multiple kinds of images, they are a sou...
research
09/30/2022

Predicting Cellular Responses with Variational Causal Inference and Refined Relational Information

Predicting the responses of a cell under perturbations may bring importa...

Please sign up or login with your details

Forgot password? Click here to reset