Development and evaluation of an open-source, machine learning-based average annual daily traffic estimation software

10/23/2019 ∙ by Zadid Khan, et al. ∙ 0

Traditionally, Departments of Transportation (DOTs) use the factor-based model to estimate Annual Average Daily Traffic (AADT) from short-term traffic counts. The expansion factors, derived from the permanent traffic count stations, are applied to the short-term counts for AADT estimation. The inherent challenges of the factor-based method (i.e., grouping the count stations, applying proper expansion factors) make the estimated AADT values erroneous. Based on a survey conducted by the authors, 97 transportation agencies use the factor-based AADT estimation model, and these agencies face the aforementioned challenges while using factor-based models to estimate AADT. To derive a more accurate AADT, this paper presents the "estimAADTion" software, which is an open-source software developed based on a machine learning method called support vector regression (SVR) for estimating AADT using 24-hour short-term count data. DOTs conduct short-term counts at different locations periodically. This software has been designed to estimate AADT at a particular location from the short-term counts collected at those locations. In order to estimate AADT from short-term counts, the software uses data from permanent count stations to train the SVR model. The performance of the "estimAADTion" software is validated using the short-term count data from South Carolina. The Mean Absolute Percentage Error (MAPE) of the AADT estimated from the software is 3 6

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 13

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.