Determining parameters in generalized thermomechanics for metamaterials by means of asymptotic homogenization

07/07/2022
by   Bozo Vazic, et al.
0

Advancement in manufacturing methods enable designing so called metamaterials with a tailor-made microstructure. Microstructure affects materials response within a length-scale, where we model this behavior by using the generalized thermomechanics. Strain gradient theory is employed as a higher-order theory with thermodynamics modeled as a first-order theory. Developing multiphysics models for heterogeneous materials is indeed a challenge and even this “simplest” model in generalized thermomechanics causes dozens of parameters to be determined. We develop a computational model by using a given microstructure, modeled as a periodic domain, and numerically calculate all parameters by means of asymptotic homogenization. Finite element method (FEM) is employed with the aid of open-source codes (FEniCS). Some example with symmetric and random distribution of voids in a model problem verifies the method and provides an example at which length-scale we need to consider generalized thermoeleasticity in composite materials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset