Deep Learning Sentiment Analysis of Amazon.com Reviews and Ratings

04/04/2019
by   Nishit Shrestha, et al.
0

Our study employs sentiment analysis to evaluate the compatibility of Amazon.com reviews with their corresponding ratings. Sentiment analysis is the task of identifying and classifying the sentiment expressed in a piece of text as being positive or negative. On e-commerce websites such as Amazon.com, consumers can submit their reviews along with a specific polarity rating. In some instances, there is a mismatch between the review and the rating. To identify the reviews with mismatched ratings we performed sentiment analysis using deep learning on Amazon.com product review data. Product reviews were converted to vectors using paragraph vector, which then was used to train a recurrent neural network with gated recurrent unit. Our model incorporated both semantic relationship of review text and product information. We also developed a web service application that predicts the rating score for a submitted review using the trained model and if there is a mismatch between predicted rating score and submitted rating score, it provides feedback to the reviewer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro