Deep Learning Based Caching for Self-Driving Car in Multi-access Edge Computing

10/03/2018
by   Anselme Ndikumana, et al.
0

Once self-driving car becomes a reality and passengers are no longer worry about it, they will need to find new ways of entertainment. However, retrieving entertainment contents at the Data Center (DC) can hinder content delivery service due to high delay of car-to-DC communication. To address these challenges, we propose a deep learning based caching for self-driving car, by using Deep Learning approaches deployed on the Multi-access Edge Computing (MEC) structure. First, at DC, Multi-Layer Perceptron (MLP) is used to predict the probabilities of contents to be requested in specific areas. To reduce the car-DC delay, MLP outputs are logged into MEC servers attached to roadside units. Second, in order to cache entertainment contents stylized for car passengers' features such as age and gender, Convolutional Neural Network (CNN) is used to predict age and gender of passengers. Third, each car requests MLP output from MEC server and compares its CNN and MLP outputs by using k-means and binary classification. Through this, the self-driving car can identify the contents need to be downloaded from the MEC server and cached. Finally, we formulate deep learning based caching in the self-driving car that enhances entertainment services as an optimization problem whose goal is to minimize content downloading delay. To solve the formulated problem, a Block Successive Majorization-Minimization (BS-MM) technique is applied. The simulation results show that the accuracy of our prediction for the contents need to be cached in the areas of the self-driving car is achieved at 98.04 minimize delay.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset