Deep learning approaches for fast radio signal prediction
The aim of this work is the prediction of power coverage in a dense urban environment given building and transmitter locations. Conventionally ray-tracing is regarded as the most accurate method to predict energy distribution patterns in the area in the presence of diverse radio propagation phenomena. However, ray-tracing simulations are time consuming and require extensive computational resources. We propose deep neural network models to learn from ray-tracing results and predict the power coverage dynamically from buildings and transmitter properties. The proposed UNET model with strided convolutions and inception modules provide highly accurate results that are close to the ray-tracing output on 32x32 frames. This model will allow practitioners to search for the best transmitter locations effectively and reduce the design time significantly.
READ FULL TEXT