Data-driven sensor scheduling for remote estimation in wireless networks

12/05/2019
by   Marcos M. Vasconcelos, et al.
0

Sensor scheduling is a well studied problem in signal processing and control with numerous applications. Despite its successful history, most of the related literature assumes the knowledge of the underlying probabilistic model of the sensor measurements such as the correlation structure or the entire joint probability density function. Herein, a framework for sensor scheduling for remote estimation is introduced in which the system design and the scheduling decisions are based solely on observed data. Unicast and broadcast networks and corresponding receivers are considered. In both cases, the empirical risk minimization can be posed as a difference-of-convex optimization problem and locally optimal solutions are obtained efficiently by applying the convex-concave procedure. Our results are independent of the data's probability density function, correlation structure and the number of sensors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset