Data-Driven Gait Segmentation for Walking Assistance in a Lower-Limb Assistive Device

02/28/2019
by   Aleksandra Kalinowska, et al.
0

Hybrid systems, such as bipedal walkers, are challenging to control because of discontinuities in their nonlinear dynamics. Little can be predicted about the systems' evolution without modeling the guard conditions that govern transitions between hybrid modes, so even systems with reliable state sensing can be difficult to control. We propose an algorithm that allows for determining the hybrid mode of a system in real-time using data-driven analysis. The algorithm is used with data-driven dynamics identification to enable model predictive control based entirely on data. Two examples---a simulated hopper and experimental data from a bipedal walker---are used. In the context of the first example, we are able to closely approximate the dynamics of a hybrid SLIP model and then successfully use them for control in simulation. In the second example, we demonstrate gait partitioning of human walking data, accurately differentiating between stance and swing, as well as selected subphases of swing. We identify contact events, such as heel strike and toe-off, without a contact sensor using only kinematics data from the knee and hip joints, which could be particularly useful in providing online assistance during walking. Our algorithm does not assume a predefined gait structure or gait phase transitions, lending itself to segmentation of both healthy and pathological gaits. With this flexibility, impairment-specific rehabilitation strategies or assistance could be designed.

READ FULL TEXT

page 1

page 4

research
07/08/2021

Identification of Gait Phases with Neural Networks for Smooth Transparent Control of a Lower Limb Exoskeleton

Lower limbs exoskeletons provide assistance during standing, squatting, ...
research
09/24/2019

Towards Variable Assistance for Lower Body Exoskeletons

This paper presents and experimentally demonstrates a novel framework fo...
research
10/06/2021

A hybrid approach for dynamically training a torque prediction model for devising a human-machine interface control strategy

Human-machine interfaces (HMI) play a pivotal role in the rehabilitation...
research
05/11/2023

Control of a Back-Support Exoskeleton to Assist Carrying Activities

Back-support exoskeletons are commonly used in the workplace to reduce l...
research
07/02/2020

Control of Walking Assist Exoskeleton with Time-delay Based on the Prediction of Plantar Force

Many kinds of lower-limb exoskeletons were developed for walking assista...
research
04/30/2022

Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain

Positive biomechanical outcomes have been reported with lower-limb exosk...
research
08/01/2022

Continuous locomotion mode recognition and gait phase estimation based on a shank-mounted IMU with artificial neural networks

To improve the control of wearable robotics for gait assistance, we pres...

Please sign up or login with your details

Forgot password? Click here to reset