Cross-Subject Emotion Recognition with Sparsely-Labeled Peripheral Physiological Data Using SHAP-Explained Tree Ensembles

11/05/2022
by   Feng Zhou, et al.
0

There are still many challenges of emotion recognition using physiological data despite the substantial progress made recently. In this paper, we attempted to address two major challenges. First, in order to deal with the sparsely-labeled physiological data, we first decomposed the raw physiological data using signal spectrum analysis, based on which we extracted both complexity and energy features. Such a procedure helped reduce noise and improve feature extraction effectiveness. Second, in order to improve the explainability of the machine learning models in emotion recognition with physiological data, we proposed Light Gradient Boosting Machine (LightGBM) and SHapley Additive exPlanations (SHAP) for emotion prediction and model explanation, respectively. The LightGBM model outperformed the eXtreme Gradient Boosting (XGBoost) model on the public Database for Emotion Analysis using Physiological signals (DEAP) with f1-scores of 0.814, 0.823, and 0.860 for binary classification of valence, arousal, and liking, respectively, with cross-subject validation using eight peripheral physiological signals. Furthermore, the SHAP model was able to identify the most important features in emotion recognition, and revealed the relationships between the predictor variables and the response variables in terms of their main effects and interaction effects. Therefore, the results of the proposed model not only had good performance using peripheral physiological data, but also gave more insights into the underlying mechanisms in recognizing emotions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset